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I. l High Temperature Thermal Diffusivity Measurement

Senior Investigators: Dr. Manfred Altman, Dr. Ram Sharma

Ph.D. Student: K. Sreenivasan

Qbjectives

To develop an experimental technique suitable for the determina-

tion of thermal diffusivities at high temperatures, primarily for the testing

of thermal energy storage materials in the liquid state.

Previous Accomplishments

Phase 1: The theory of transient technique was studied and a new

technique applicable to liquids was developed.

Phase 2: The furnace and measuring equipment were designed and

built.

Progress in Past Period

The thermal diffusivity of the container material was measured.

The liquid diffusivity cell was calibrated with a liquid whose thermal

diffusivity is known, Thermal diffusivity of liquid Lithium Fluoride was

measured. Details are presented on page AI-1.

1-2



1.1 Thermal Diffusivity

R. A. Sharma H. Keramaty

Thermal diffusivity of the mixtures of Calcium Fluoride and Barium

Fluoride with compositions 33.3% C aF 2 and 66.7% CaF 2 (balance BaF2)

have been measured.

The thermal diffusivity variation with temperature and composition

is shown in Table I and Fig. I.

Further work on the measurements of different materials and

mixtures is in progress to establish some relationship between diffusivity

of the mixtures and their components. See page AI-6 andAI-7.

A paper on "Thermodynamic Study of Mg-Ge System" was presented

at A.S.M.E. Exposition & Congress in November, 1966, in New York
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I. 2 Experimental Determination of the Thermoelectric Properties

of Graphite Alloys

Senior Investigator: Dr. S. R. Pollack

Graduate Student: I. I. Curry

Objectives

The objective of this experiment is to develop new high efficiency

thermoelectric energy conversion materials.

Previous Accomplishments

Experimental apparatus has been assembled that will enable mea-

surements of the thermoelectric power, electrical conductivity, and Hall

coefficient over a temperature range of 77°K to 350°K

Progress in Past Period

Several semiconductor compounds were fabricated and studied.

Large thermoelectric powers ( >340_v/°C ) were realized. Fabrication

techniques are being investigated. For details see page AI-8.
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1.3 Tunnel Emission Cold Cathodes

Senior Investigator: Dr. S. R. Pollack

Graduate Student: S. Basavaiah

Objectives

The purpose of this investigation is to develop efficient cold

cathodes for electric devices, and, eventually to the development Of

tunnel emission devices and the study of hot electron transport phenomena.

The by-products of this work are expected to be a better understanding of

the electron scattering mechanisms in thin films with applicability to thin

film solar cells and similar devices.

Previous Accomplishments

A new vacuum system design was completed after many futile at-

tempts to utilize the Elion system.

Progress in Past Period

The new system was completed and tested, and successfully used

to fabricate W-W O -Au samples. The preliminary results of the current-
x y

voltage characteristics are being studied. For details see page A 1-10.
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1.4 Studies of Thermal Transpiration for the Development

of a Thermal Pump

Dr. M. Altman Mr. E. Hopfinger

Objective s

To develop a gas pump without moving parts based on the thermal

transpiration principle.

Previous Accomplishments

Theoretical analyses of idealized system,

Progress in Past Period

The apparatus has been assembled and preliminary experimental

results were obtained using Helium. These data show the general charac-

teristics of such a pump. Details on page AI-13.

I-6



2. PLASMA ENGINEERING

Branch Chief: Leon W. Zelby

Senior Members: Michael Kaplit, George Schrenk,

Samuel Schweitzer, Hsuan Yeh



2.1 Slow Wave Plasma Diagnostics

W. H. Becker L. W. Zelby

Qbjectives

To develop slow wave plasma interaction for measurement of

local plasma parameters.

Proqress in Past Period

Experimental equipment was re-assembled for measurements on

plasma columns of different radii (from 1.0 to 3.0 cm.). Measurements

of plasma decay time as functions of initial plasma current and gas

pressure were made indicating a possibility of electron temperature, and

mean free path determination. Figures are shown on page A2-1 and/%2-2.
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2.2 Plasma Centrifuqe

M. Altman S. Schweitzer

P. H sueh

Objectives

To evaluate obtainable velocities in a plasma spinning in the

annular space between two concentric cylinders under the influence of

a longitudinal magnetic field and a radial electric field.

Previous Accomplishments

First phase completed.

Proqress in Past Period

Mr. Peter Hsueh has submitted his thesis. This work has re-

sulted in a new project entitled "Flow of a Conducting Liquid in an

Annular Gap" which follows.
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2.3 The Flow of a Conductinq Liquid in an Annular Gap

.
S. Schweitzer I.M. Cohen

Objectives

To study the flow field, current distribution, and magnetic field in

an annular gap filled with a conducting fluid and driven electromagnetically.

Previous Accomplishments

Theoretical Analysis for the case of liquid mercury was completed

(for details see INDEC SR-8).

Progress in Past Period

One dimensional, inviscid flow of mercury in an annular gap, driven

electromagnetically has been studied. For details see page A2-3.

* Assistant Professor of Mechanical Engineering, Towne School of Civil and

Mechanical Engineering, University of Pennsylvania'.
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2.4 Experimental Study of an Electromaqnetically Driven

Mercury Oentrifuq e

S. Schweitzer I. M Cohen

T. Ebtekar

Objectives

To study the operation parameters of a mercury centrifuge.

Previous Accomplishments

None

Proqress in Past Period

Design of a simple mercury centrifuge, driven electromagnetically

has been completed. Provisions for measurements of velocity and pressure

distributions as well as skin friction coefficients have been made. Apparatus

is under construction.

* Assistant Professor of Mechanical Engineering, Towne School of Civil and

Mechanical Engineering, University of Pennsylvania.

1-I0



2.5 The Influence of High Fields on Surface Charge Distributions

G. L. Schrenk S. Fonash

.Objectives

To determine the effect of high fields on the work function of

metals.

Previous Accomplishments

Emphasis is being placed on the problem of understanding the vary-

ing average intensity of the different regions of field ion micrographs.

These regions are sharply defined and are more pronounced in some metals

than in others. (For example, in platinum they form one of the most promi-

nent features of the micrograph, while in tungsten they are barely discernible.)

The explanation of these sharply defined regions appears to be re-

lated to the band structure of metals at their Fermi levels. We only need to

consider the Fermi level because, at the low temperature and high field

strengths involved, tunneling occurs only to the Fermi level of the metal.

Progress in Past Period

Current research is focused on the construction of a quantum mechan-

ical model of this tunneling process. This research is further complicated by

the lack of knowledge of the Fermi surfaces of the metals involved; thus con-

siderable efforts are also being devoted to investigating the Fermi surfaces

involved. Results will be made available in future reports.
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2.6 Anistropy of Metal Work Functions

M. Kaplit

Obj ective

To develop a model accounting fDr different results of measurements of

the work function of tungsten.

Previous Accomplishments

Effects of surface stresses and polarizabilities were calculated.

Progress in Past Period

Study completed with the calculation of the work function differences

between the four planes of tungsten; (110), (211), (100), (111).

For details see page A2-10.

o
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2.7 Characteristics of Thermionic Plasma Diodes with Gas Mixtures

G. L. Schrenk A. Kaufman

Objectives

To develop a quantitative model for "seeded" diodes for the purpose

of evaluating the Penning effect.

Previous Accomplishments

The mathematical models for both the ignited and the unignited modes

of a plasma diode using a gas mixture have been completed.

Progress in Past Period

The results of these models are currently being studied.

see page A2-20.

For details
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3. ELECTROCHEMICALENGINEERING

Branch Chief: Dr. Leonard Nanis

Senior Member: Dr. John O'M. Bockris

Postdoctoral Research Associate: Dr. Philippe Javet



3.1

Dissolving H 2 and 0 2

Senior Investigator:

Graduate Student:

The Design of Absorption Towers

in Aqueous KOH

Dr. L. Nanis

Mr. Irving Klein

Objectives

This is a special project undertaken at the suggestion of

NASA to determine, using conventional chemical engineering methods,

the feasibility of a fuel cell system which does not rely on porous

electrodes. Fuel gas is dissolved into electrolyte in contact towers

and is reacted between flat electrodes. Spent electrolyte is recycled

through the towers.

Previous Accomplishments

New project.

Progress in Past Period

Contact towers for saturating H 2 and 02 into 4N KOH were

designed. Tower heights of about 5 feet were computed for 1 square foot

cross section. Crude estimates of pumping losses indicate about one-

fourth of the output of a 200 watt fuel cell would be consumed in a

parasitic mode. Future work will deal with improved loss calculations for

towers and cell stacks as well as total size considerations.

For further details, see Appendix A3-1.

\
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3.2 Overpotential - Time Variation for Galvanostatic Gharging with Potential Dependent

Capacitance

Senior Investigator: Dr. L. Nanis

Research Associate: Dr. P. Javet

Objectives

The goal of this effort is essentially stated in Sec. 3 .3 namely the development

of simplified mathematics for electrochemical engineering,

Previous Accomplishments

A modification to the full rate equation (overpotential vs. current density) was

found to permit solution of the non-linear equation for overpotential vs. time.

Progress in Past Period

As indicated in SR-9, the effect of a linear potential dependent capacity has

been investigated. A considerable distortion of I]vs. t occurs in comparison

with the case of constant capacity.

For details see Appendix A3-28.
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3.3 Current and Potential Distribution

in Cylindrical Geometries: Engineering

Applications to Fuel Cell Design

Senior Investigator: Dr. L. Nanis

Objectives

The purpose of these efforts is to develop simplified treatments of

the mathematics which underlie fuel cell design and behavior. For

engineering purposes, the compact notation favored by mathematicians is

elegant but not useful. Attention will be devoted to simplifying the

mathematics wherever possible and indicating design parameters which

evolve in considerations of potential and current distribution in porous

electrode models and related heat and mass transfer computations.

Previous Accomplishments

New Project

Progress in Past Period

Fourier - Bessel transforms have been used to generate a useful

result in matrix cell design. The resistance due to screen contacts on

a matrix sandwich has been evaluated for the limits of constant potential

and constant current density.

For details see Appendix A3-32.
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3.4 Foaminq Electrdzte Fuel Cell

Senior Investigator: Dr. L. Nanis

Research Specialist: Mr. A. Saunders

Qbj ectives

This work derives from considerations of diffusion as an ultimate fuel cell

limitation step and methods to avoid the use of porous electrodes. Rapid

gas saturation into electrolyte can be accomplished by providing large

contact area and short diffusion path. Electrolyte foam is theoretically

ideal for this purpose and laboratory studies are needed to verify this

approach.

New project.

Previous Accomplishments

Progress in Past Period

Remarkable improvement over bulk electrolyte behavior is obtained for

electrodes operating through electrolyte foam, despite _igher resistance.

Feasibility of this method is being extended to improved cell design. For

details see Appendix A3-41.
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Publications List

INDEC-1

INDEC-2

INDEC-3

INDEC-4

INDEC-5

INDEC -6

INDEC-7

"The Optimization of MHD Generators with Arbitrary

Conductivity", H. Yeh and T. K. Chu, ASME Paper

63-WA-349.

"The Prediction of Transient Heat Transfer Performance

of Thermal Energy_Storage Devices", M. Altman, D. P. Ross,

H. Chang, Proceedings of 6th National Heat Transfer

Conference, Boston, Mass., 1963.

"The Binary Eutectic as a Thermal Energy Storaqe System:

Equilibrium Properties", G. R. Belton and Y. K. Rao,

paper presented at the 6th National Heat Transfer Conference,

Boston, Mass., Aug. 11-14, 1963.

"Theoretical Model of a Thermionic Converter", J. Dunlop

and G. Schrenk, Proceedings of Thermionic Specialist

Conference, Gatlinburg, Tenn., pp. 57-62, Oct. 7-9, 1963.

"Thermophysical and Transport Properties of High Temperature

Energy Storage Materials", R. Sharma and H. Chang, paper

presented at the Third Annual Symposium, High Temperature

Conversion Heat to Electricity, Tucson, Arizona, Feb. 19-2i,

1964.

"Solar Collection Limitations for Dynamic Converters-

Simulation of Solar-Thermal Energy Conversion Systems",

G. L. Schrenk, Proceedings of AGARD Conference, Cannes,

France, March 16-20, 1964.

"Prospects for Thermal Energy Storage", M. Altman, Proceed-

ings of AGARD Conference, Cannes, France, March 16-20, 196.4.
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INDEC -8

INDEC -9

INDEC - 10

INDEC - 1 1

"The Hollow Thermionic Converter", L. Zelby, IEEE

Annual Meeting on Energy Conversion, Clearwater,

Florida, May, 1964.

"The Institute for Direct Energy Conversion", M. Altman,

paper presented at Am. Soc. Eng. Ed. Annual Meeting,

University of Maine, Orono, Maine, June 22-26, 1964.

"Emitter Sheath Polarity in Plasma Diodes", G. Schrenk,

Proceedings of Thermionic Specialist Conference,

Cleveland, Ohio, Oct. 26-28, 1964, pp. 249-257.

"Electron Emission from Metals in Gaseous Environment",

IN DEC - 12

IN DEC - 13

INDEC - 14

INDEC- 15

M. Kaplit, G. Schrenk, L. Zelby, Proceedings of Thermionic

Specialist Conference, Cleveland, Ohio, Oct. 26-28, 1964,

pp. 4-10.

"Criteria for Emitter Sheath Polarity in Plasma Diodes",

G. Schrenk, paper presented at ASME Winter Annual Meet-

ing, New York, No. 29, Dec. 3, 1964.

"An Electrochemical and Microbioloqical Study of the

Formic Acid-Formic Dehydrogenlyase System", R. J. Blasco

and E. Gileadi, Advanced Energy Conversion, Vol. 4,

pp. 179-186, 1964.

"Mathematical Simulation of Solar Thermionic Enerqy Con-

version Systems", G. Schrenk and A. Lowi, Proceedings

of the International Thermionic Electrical Power Generation

Conference, IEEE, London, England, Sept. 20-24, 1965.

"Cavity Receiver Temperature Analysis", R. McKinnon,

A. Turrin, G. Schrenk, AIAA paper No. 65-470, July 26-29,

1965.
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INDEC-16 "Electron Emission from Metals in Vapors of Cesium and

IN DEC- 17

INDEC - 18

INDEC-19

INDEC -20

INDEC-21

INDEC -22

Fluorine", G. Schrenk and M. Kaplit. Proceedings of

the Thermionic Specialist Conference, San Diego, California,

Oct. 25-27, 1965.

"Lonqitudinal Interaction of Microwaves with an Arqon

Discharge", C. A. Renton and L. W. Zelby, Appl. Phys.

Ltrs., Vol. 6, No. 8, pp. 167-169, Sept. 15, 1965.

"Microwave Interaction with a Non-Uniform Arqon Discharqe",

L. W. Zelby, Proceedings of the Symposium of Microwave Inter-

action with Ferrimagnetics and Plasmas, London, England,

pp. 32-1 to 32-3, Sept. 13-17, 1965.

"Two-Phase Flow and Heat Transfer for Boilinq Liquid Nitroqen

in Horizontal Tubes", M. Altman and I. H. Jones, Chemical

Engineering Progress Symposium Series, Volume 61, No. 57,

Oct. 1965.

"Electrical Conductivity of a Partially Ionized Gas in a

Magnetic Field", S. Schweitzer and M. Mitchner, Submitted

to the AIAA Journal.

"Models for Electron Emission from Metals with Adsorbed

Monolayers", M. Kaplit and G. L. Schrenk, Submitted to

Advanced Energy Conversion.

"Models for Electron Emission from Metals with Adsorbed

Monolayers", M. Kaplit and G. L. Schrenk, paper presented

at Twenty-Sixth Annual Conference on Physical Electronics,

Massachusetts Institute of Technology, Cambridge, Mass.,

March 21-23, 1966.
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INDEC-23

INDEC-24

INDEC-25

INDEC-26

INDEC-27

tNDEC-28

INDEC-29

INDEC-30

"Slow Wave Interaction with an Argon Discharge", (Abstract)

L. W. Zelby, Symposium on Properties and Applications of

Low-Temperature Plasmas, XX-th International Congress of

I.V.P.A.C., Moscow, USSR, luly 15-18, 1965.

"Understanding Plasma Diodes and Amplifiers", L. W. Zelby,

Electronic Industries, Vol. 24, No. 11, p. 64, Nov. 1965.

"A Simplified Approach to the Analysis of Electromagnetic Wave

Propagation Characteristics of Plasma Coated Surfaces",

L. W. Zelby, RCA Review, Vol. 26, No. 4, p. 497, Dec. 1965.

"Plasma Coated Surface as a Wave Guide", L. W. Zelby,

RCA Engineer, Vol. 11, No. 4, p. 50, lan. 19, 1966.

"Measurements of Collision Frequency in an Argon Discharqe",

L. W. Zelby, W. O. Mehuron, R. Kalagher, Applied Physics

Letters, lune 15, 1966, Vol. 21, No. 5, pp. 522-524.

"Effects of Inhomoqeneous Electron Density in a Cylindrical

Plasma Column Surrounded by a Helix", R. Kalagher,

Submitted to IEEE Transactions on Microwave Theory and

Techniques, March 1966.

"Syringe for Injecting Sodium Potassium Alloy ", Samuel

Greenhalgh, The Review of Scientific Instruments, Vol. 38,

No. 1, pp. 121-122, lanuary 1967.

"Characteristics of Plasma Probes in a MHD Working Fluid",

A. Whitman, H. Yeh, presented at International Symposium

on Magnetohydrodynamic Electrical Power Generation, Salzburg,

Austria, luly 4-8, 1966.
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INDEC-31

INDEC -32

"Convergence of Successive Approximations to the Scalar

Electrical Conductivity of Some Weakly Ionized Real Gases"

S. Schweitzer, M. Mitchner, published in the A.I.A.A.

Journal, Volume S, No. 2, pp. 351-353, 1967.

"The Determination of Thermal Diffusivities of Thermal Energy

INDEC-33

INDEC-34

INDEC-35

INDEC-36

INDEC -37

Storage Materials, Part 1, Solids Up To Melting Point",

Han Chang, Manfred Altman, Ram Sharma. Accepted for

publication in the A.S.M.E. Journal.

"Electrochemical Principles of Corrosion", Leonard Nanis,

presented at the National Association of Corrosion Engineers

Symposium, September, 1966, Philadelphia, Penna.

"Tolerance Specification by Multiple Alignment Statistics",

L. Nanis, presented at Session 14 "Effective Utilization of

Grid-Based Interconnection Systems", proceedings of the

1966 Western Electronic Show and Convention, Los Angeles,

California, August, I.E.E.E.

"On the Tensor Electrical Conductivity of Atmospheric

Cesium-Seeded Argon", S. Schweitzer, accepted by the

A.I.A.A. Journal for publication in May, 1967.

"The Reaction of Molten Metal Droplets with a Rarefield

Atmosphere", by M. Altman, D. Ross. Accepted for publica-

tion in the A.I.A.A. Iournal.

"Ele ctron Tra nsfer Proc e sses Through Ta nta lure-Tanta lum

Oxide Diodes", S. Pollack. Journal of Applied Physics,

November, 1966.
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INDEC-38 "A Method for Determination of the Permeation Rate of

INDEC-39

INDEC-40

INDEC-41

INDEC-42

Hydrogen Throuqh Metal Membranes", J. McBreen, W. Beck,

L. Nanis, Journal of Electrochemical Society, ll3, No. I1,

pp. 1218-1222 (November 1966).

"Tensor Electrical Conductivity of a Partially Ionized Gas

in a Magnetic Field", S. Schweitzer and M. Mitchner.

To be published in the Physics of Fluids.

"New Method of Producinq Electric Power by Means of a

Thermionic Converter". Patent application by M. /_itman.

"A Metal-Oxide Thin Film Photovoltaic Energy Converter".

Patent application by M. /_ltman and S. R. Pollack.

"Current & Potential Distribution in Cylindrical Geometries:

INDEC-43

INDEC-44

Engineering Applications", L. Nanis, submitted to Journal

Electrochemical Society, to be presented at Current Distribu-

tion Symposium, Dallas, May 1967 Meeting, Electrochemical

Society.

"Overpotential-Time Variation for Galvanostatic Charqing

with Potential Dependent Capacitance", L. Nanis, P. Javet,

submitted to Journal Electrochemical Society, to be presented

at Current Distribution Symposium, Dallas, May 1967 Meet-

ing, Electrochemical Society.

"Galvanostatic Charging with Potential Dependent Double

Layer Capacitance", L. Nanis, P. Javet, to be submitted to

Electrochimica Acta.
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INDEC-45

INDEC-46

INDEC-47

INDEC-48

•INDEC-49

"Decay of Overpotential from the Tafel Reqion with Potential

Dependent Double Layer Capacitance", L. Nanis, P. Javet,

to be submitted to Journal of Electrochemical Society.

"Status of Maqnetohydrodynamic Power Generation for

Terrestrial Applications", H. Yeh, presented at the A.I.A.A.

Third Annual Meeting in Boston, Massachusetts, Nov. 29 -

Dec. 2, 1966.

"First Order Effects of Production on the Continuum Theory

of Spherical Electrostatic Probes", Ira M. Cohen and

S. Schweitzer, February, 1967.

"The Electric Automobile - A Discussion of Strateqv, Tactics,

and Leadership", M. Altman, presented at the National

Electric Automobile Symposium, San Jose, California,

Feb. 24, 25, 1967.

"The Electric Automobile - Its Future", M. Altman, presented

at the IEEE International Convention, New York, March 20 -

23, 1967.
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Thermal Diffusivity of Liquids _,_

Senior Investigators:_Dr. Manfred Altman, Dr. Ram Sharma

Ph.D. Student: K. SreenivasanC-_

The theory and the experimental details of the method have been

described in previous reports. Fundamentally, the difference between

the temperature at the surface and at the center of a cylindrical container

is measured for a constant rate of surface temperature rise. The liquid,

whose thermal diffusivity is to be measured, is contained in an annular

groove concentric with the surface. Note that it is not necessary to

measure the temperature of the liquid. The width of the groove is so

small as to maintain "creeping thermal motion" in the liquid. This mini-

mizes free convection effects to a negligible value.

The thermal diffusivity of the container material is essential for

calculating liquid thermal diffusivity. This report presents the experi-

mental results for the thermal diffusivity of the container material. The

experimental technique is similar to the one described above with this

difference--the cylindrical container is replaced by a solid cylindrical

specimen. The material of the specimen is boron nitride. The surface

temperature and the difference between the surface temperature and the

temperature at the center are monitored in separate recorders. The thermal

diffusivity of the specimen is calculated using the recorder data. The

experimental results are presented in Fig. i.

A new 2 3/8" Dia. Pt. -40% Rh wire-wound-furnace has been

designed and built. This was used for the liquid d1_fusivity measurements.

The results are presented in the next section.

_°
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Experimental Results

It was decided to calibrate liquid-diffusivity cell by testing a liquid

whose thermal diffusivity has been measured by other investigators. Sodium

Nitrate (melting point 306.8°C) was chosen as the liquid. Sodium Nitrate

was tested in the 0.0625 inch annular gap container. The results are shown

in Fig. 21. As seen in this figure, the results of this investigation compare

very favourably with the results of Bloom et al (Ref. 1).

Lithium Fluoride liquid was tested in two containers whose gap widths

were different, in order to detect the influence of free convection. It may be

recalled that the influence of free convection is proportional to the cube of

the gap width. The results obtained with both the containers are shown in

Fig. 3. No discernible difference exists in these results. It is reasonable

to conclude that free convection effects are negligibly small.

Ref. I. H. Bloom, A. Doroszkowski, and S. B. Tricklebank

Australian [. Chem., 18, 1171-6, 1965.
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TABLE I

Thermal Diffusivity of CaF2, BaF2, and Their Mixtures

2 x 103 (cm2/sec)

Temp

(°c)

I00

200

300

400

500

600

8OO

I000

CaF 2

12.9

9.9

8.75

7.85

7.24

6.75

6.25

6.13

BaF 2

13.5

10.57

9.5

9.0

8.85

8.82

8.78

8.78

33.3% CaF^

+66 7% BaF2z

13.25

10.3

9.26

8.75

8.55

8.45

8.36

8.36

66.7% CaF_+
%1

33.3% BaF_ _
z

13.0

10.1

9.06

8.44

7.97

7.59

7.25

7.22
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Experimental Determination of the Thermoelectric Properties

of Graphite Alloys

Senior Investigator:_Dr. S. R. Pollack

Graduate Student: J. J. Curry_

During the past quarter, the apparatus for the measurement of

the thermoelectric power, electrical conductivity, Hall coefficient and

magnetoresistivity has been completed. The apparatus has been checked

and calibrated thoroughly. Measurements of the thermoelectric power of

silver as a function of temperature have been made. The reproducibility

and agreement with published experimental results are excellent.

Since the instrumentation has been completed and the graphite

compounds have not been available in large enough quantities to permit

measurements of the thermoelectric properties, work has begun on the

study of some semiconductor compounds. These compounds belong to a

class of compounds Cu-22-3-64 where the numbers designate the period

of the components on the periodic chart• This class of compounds has

been developed by Professor E. Parthe" of the Metallurgical Engineering

faculty, and Professor Parth6 has agreed to collaborate with us on this

project. The structure of the compounds is tetrahedral and of the

zincblende type.

and tested.

promising•

ratio of 2.

The electrical conductivity was i0

Several samples were prepared from commercially pure elements

Of these, one compound, CuCd21n Te4, seemed extremely
o

The compound has a lattice parameter of 6.34A with a c/a

The thermoelectric power was very high (+ 340_v/°K @300°K).

-2 to 10 -4 (ohm-cm) -I depending on

heat treatment.

Six other samples were prepared using both commercially pure
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and hi-purity elements. We were unable to duplicate the crystal structure

of the previous compound. However, one sample of hi-purity materials was

composed of CuCd21nTe4 plus a small quantity of some other phase.

Measurements on this sample indicated that the thermoelectric power was

reduced to +85_v/°K@300°K and had an electrical conductivity of 2.38

(ohm-cm)-I.

It is believed that the high thermoelectric power is due to an im-

purity effect. If one assumes that NA<ND, where N A and N D are respec-

tively the concentration of acceptors and donors, in the sample made with

commercial purity, then the Fermi level should be close to the center of

the forbidden gap but below it. This should result in a large thermoelectric

power and a moderate p-type conductivity as observed. However, when

the compound is made from hi-purity elements, the donor concentration

is reduced. This brings the Fermi level closer to the acceptor level.

Although this brings about an increase in the p-type conductivity, it re-

duces the thermoelectric power due to the lowering of the Fermi level.

Current programs entail the determination of the impurities and

the measurement of the absorption band gap by optical techniques. Studies

will be made on compounds of various dopant concentrations and the effects

of heat treatment on the thermoelectric properties. New methods will be

developed for compound preparation in order to enhance the reproducibility

and make the preparation more efficient.
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.j Tunnel Emission Cold Cathodes

Senior Investigator: Dr_S. R. Pollack

Graduate Student: S. BasavaiahC_

Vacuum System:

Varian vacuum chamber and the accessories were _te_fi_ered dur_n_ 4

the first week of November, The vacuum system was assembled by the

middle of November and appropriate performance checks were made. The

system performance is as follows:

Roughing time from atmosphere to 2 x i0-4Torr, is 20 minutes as

compared to an hour for the previous Elion System. Total time to achieve

5 x 10-STorr. is approximately 2 hours compared to 2 days for the previous

system, Ultimate vacuum achieved is 5 x 10-9Torr.

Necessary fixtures for thin film evaporation were incorporated.

Sample Preparation:

Tungsten - Tungsten Oxide - Gold tunnel junctions are fabricated as

follows:

99. 999 pure zone refined tungsten is evaporated by "Electron Beam

Evaporation" onto a 3"xl" glass (7059 Coming) substrate at a pressure of

5 x 10-6Torr. This is not the best that can be done. It merely represents

the convenient pressure for preliminary experiments. The pressure at the

start Of the evaporation is 5 x 10-8Tort. The evaporation rate is approxi-

mately 20A°/minute. This is estimated by dividing the thickness by the

total time of evaporation. Due to the delay in the delivery of crystals,

the quartz crystal microbalance could not be used at this stage.

The tungsten film is oxidized by plasma oxidation at an oxygen

pressure of 55 microns. The discharge voltage is 600 volts with a distance

AI-IO



of approximately 1 i/2" between the cathode and anode. The sample is kept

In the negative glow of the discharge for 15 minutes.

Gold films are evaporated onto the oxidized tungsten film at right

angles to it.

Fig. 1

MEASUREMENTS AND DATA:

Current-voltage (V-I). Characteristics of the samples are being taken.

This being the first set of samples, no firm conclusions can be drawn at this

stage, but a rough idea of the behaviour can be obtained.

Figure 2 is a typical V-I characteristic.

_ oF THE _aNfbE /

o.Z o-_ o'g o.$ I.O 1"7--

Fig. 2
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The capacitance of the sample was measured by a bridge and assuming a

dielectric constant of 41.7 for tungsten oxide, the thickness of the oxide

is estimated to be 9SA °.

Further Plans:

Dr. Pollack had discussions with Dr. A. Goodman of R.C.A.

Laboratory in Princeton concerning the possibility of collaboration in the

internal photo emission measurements on the samples. Dr. Goodman was

anxious to collaborate and his department head, Dr. Paul Rappaport, was

also enthusiastic. This zollaboration is being further studied.

Further investigations are under way. These include:

i) Mask design to eliminate edge effects.

2) Mask design to include samples for internal photo emission

mea surement s.

3) Detailed I-V-T measurements from 77°K to 200°C (if possible).

4) Attempts to identify the mechanism of electron transfer.

S)°Determination of barrier heights v}ith different over layer

metal films.
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_ Studies of Thermal Transpiration for the Development
of a "Thermal Pump" 69

L Dr. M. Altman Mr. E. Hopfinger

_i_W_

The phenomena of thermal transpiration wa s described in the

previous report, and flow rates through an infinitely thin membrane, cal-

culated from kinetic theory, have been presented• It was also mentioned

that in an experimental setup, the flow will be governed by diffusion

rather than effusion, and therefore, much lower flow rates than the ones

shown in _e graph of the previous report are to be expected.

The experimental setup has now reached a stage where preliminary

data could be taken. In this apparatus the membrane is sealed in by a

silicone rubber gasket, which limits the temperature to <250°C• Helium

was used for these preliminary run_ and the membrane (porcelain) speci-
2

ficationswere: 38 5 cm effective area, 0.55 cmthick, 0.3x10 -6• cm

average pore diameter, 58% porosity. In one run, the surface temperatures

of the membrane were 225°C at the hot side, and 31°C at the cold side.

....22 i65
m

At various mean pressures p = 1/2 (pH+Pc), the maximum pressure

difference Ap=pH-p C (after about 5 min.), and the flow rates were recorded,

keeping the temperature difference AT=TH-Tc=194°C constant to within

+ 2%, except at p <3 cm Hg where the cold side temperature increased to

41°C at p = 1.04 cm Hg. The pressure difference was displayed on a dif-

ferential mercury manometer and the flow rates on a mercury column dis-

placement flow meter, which needed <1 mm Hg Pressure drop When lubri-

cared with sulfuric acid.

The results are presented in Figs. 1 to 3. Fig. 1 shows the flow

2
rates of Helium in gr./min, x cm membrane area . A comparison with the

flow rates through an infinitely thin membrane has not much meaning,

Al-13



especially at this stage, but if the ratio of the flow rates at AT=194°C

and atmospheric pressures is taken, a factor of 105 is obtained, assuming

2 2
a ratio of cm membrane area to be cm pore area of 6/1.

In Fig. 2 the ratio of grams gas circulated to grams in system

(which is directly proportional to the gas concentrations in the membrane)
w

is plotted versus p. This curve has a maximum at dav./k_--_.2, which

probably indicates that this is the ratio for optimum flow rates.

Figure 3 shows the pressure ratio to temperature ratio versus mean

pore diameter to mean free path ratio. This should approach 1 at dav/k << 1

and .781 at dav/X >il.

In another run the flow rates and maximum pressure differences

were recorded at various temperature differences, and constant mean

pressure. Fig. 4 shows Ap max. and the flow rates versus AT at atmos-

pheric pressure. The cold side temperature was kept constant at TC=

TC=33°C + 3%.

At present the apparatus is modified to permit isothermal flow rate

measurements which are essential for the theoretical interpretation of the

data.

4 ¸
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"' Flow of a Conducting Liquid in an Annular Gap:

A Restricted Nonexistence Proof (,di

by
-°

s. Schweitzer* and I. M. Cohen*_

University of Pennsylvania

Philadelphia, Pennsylvania 5

1 " _ 67 22166
We consider the problem of a liquid conductor (suc'h as Merclrry) "-

confined between two concentric cylindrical electrodes. The liquid

metal is electr0magnetic.ally accelerated by the Lorentz force in the

circumferential direction created when a current is passed between

the two electrodes (held at different potentials) and an axial magnetic

field is applied. The governing equations are the coupled momentum

and Maxwell equations together with Ohm's law inthe special case of

steady state, inviscid flow with constant properties. Axial symmetry

is als0 as.sumed. Gravity body forces have been neglected.

equations in vector form are then:

V •

V"

Vx

Vx

/-

V

V=O

B=O

B=_I

E_=O

O (E + V x B ) (Ohm's law')

{- v2-vx(vxX)=-vp/p +(i/p)[[xB)

of momentum)

Combining Eqs. (3) and (6) gives the "momentum eq."

(5) gives the "magnetic eq.". Thus, we have:

V -V=O

(conservation of mass)

(conservation of magnetic flux)

(Ampere' s law-)

(Faraday' s law')

(conservation

The

(l)

(2)

(3)

(4)

(5)

(6)

, and(3), (4),

(7)

*Assistant Professor. Member AIAA.

This work has been supported by the Institute for Direct Energy

Conversion and the Towne School of Civil and Mechanical Engineering

at the University of Pennsylvania.
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v .B=O .

Vx (.BxV) +_/9 o) Vx (Vx B_) = 0 (magnetic equation)

v v2-vx (vxV)=-vp/ 

(momentum equation)

with the boundary conditions:

f.

(2) Be= 0 at z=L, B 0 _I/2nr at z = -L, I/0.

(3) Ez= 0 at r=r ,r _ v{)B r =(1/war) 5"_r (rB O) at r = r r
2 I' 2

(4)E O= 0 at r =r ,r -,_Br/SZ - Bz /Sr = 0 at r=r,r
1 e • _, e

(8)

(s)

(10)

where BB_is the magnetic induction, v_is the velocity of the fluid, M is

the magnetic permeability, o is the electrical conductivity, p is the

pressure, ;{o is the potential difference between the twoelectr0des.

We have also assumed that there is no secondary flow.

The boundary conditions are consequences of the following

physical considerations. Boundary condition (i) is a statement that the

difference in potential between the inner and outer electrodes is g{o'

which is a line integral of E from one electrode to the other and inde-

pendent of the path by virtue of Eq. (4). We have chosen a radial •

path for the line integral and E.E_has been replaced by its value through

Ohrn's law andJ has been replaced by Curl B through Ampere's law.

Boundary condition (2) is found from the integral form of Ampere's law

and states that all of the current comes in from the bottom and none

leaves through the top. (See the Figure.) This is consistent with

insulated end plates, Jz 0 at z +L. Assuming that the electrodes

are perfect conductors, E must be radial at the electrode surfaces.

Then Ohm's law together with v = v 0 ]-0 and _ replaced by curl B.B_yields
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boundary conditions (3) and (4). For arbitrary values of the physical

parameters, the equations split up into autonomous subsystems, i.e.,

the magnetic field may be solved for independently of the flow and

the Coupling between the magnetic and velocity fields enters through

the boundary conditions. We prove here a restricted nonexistence

theorem: under the assumptions (a) Bz = const., (b) Br 0 or (c)

rB@ = f (z), no solutions of the above equations and boundary conditions

exist.

In scalar, component form, the equations become

_) v8/80 = O, conservation of mass (v=_Ov 8 only because

secondary flow. is neglected)
(11)

O/r) _/_r (r Br) + aBz/a z = O, conservation "of magnetic flux (12)

_/_z CaB_./_z -

¢
t"

_)/_) r [ r (8 Bz/Sr

8Bz/_ r) = O, r - magnetic eq (13)

_Br/_ z) i O, z - magnetic eq. (14)

Bz_)Bo/Bz + _b/r) 5/5r (rBO) = O, O- momentum eq. (17)

o = O/p)_p/_z +(I/p_)[Bo _%/_z+B _B/_z-

BI BBz/_r], z-momentumeq.

.(18)
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with boundary conditions (i) - (4).

Eqs. (13) and (14) with boundary condition (4) yield

_Bz/Sr - 8Br/_ z 0, r + z magnetic eq. (19)

This proves that JD= 0 (Eq. (19) is the e component of curl 13). We

observe that this result is independent Of the form Of the momentum

equation and, therefore, is valid for viscous flow as well. Thus the

assumption that J8 = 0 often made 1"2'3 is here proved as a conse-

quence of the boundary condition that E@ 0 at the el_ctrodes (which

merely assumes that the electrodes are"perfect conductors) and Eqs.

O, 4, S).

Eq. (19) replaces Eqs. (13), (14) and B.C.

(19) and (12) form an autonomous subsystem for B
r

results may then be put into Eq. (17) for B@.

(4). Note that Eqs.

and Bz, and the

We shall now prove nonexistence of solutions in three cases

under assumptions thatare made frequently in treating the viscous

1,2,3
problem

a___B z = const. = BO

From Eq. (19), Br is a function of r only and Eq.

Br = Ol/r, (C 1 = const.). Eq. (17) becomes

(1 2) gives

Bo _Be/8z + _i/r2)_/8r (rBe)= 0

This has the general solution

r Bo =f (z - Bora/2 Cl),

For no choice of f can we satisfy B.C. (2).

where Bz = const.

f an arbitrary function.

Therefore, no solution exists

A2-6



=0IH_Br

YromEq. (17) if Bz/0' Br = 0 implies bB0/Sz = 0. But

from boundary condition (2), B o must be a function of z. Therefore,

no solution exists with B = O.
[

9/_r_B0

FromEq. (17) if B /0 rB = f(z) implies 8/Sr(rB_= 0' z ' 0

and thus 8Bs/Sz = 0. But from B.C. (2), B0must be a _function of z.

Therefore, no solution exists with rB 0 =.f (z).

•This indicates that the assumptions listed above which have

been used to treat the viscous problem should be regarded with caution.
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FIGURE CAPTION

Sketch of the annular gap and geometric configuration.
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"_b Anistropv of Metal Work Functions _4

N   7-22£ 67
In order to explain the difference of at least 0.6 ev between the work

function of the (110) plane of tungsten as measured by thermionic techniques

(_-, 5.2 ev) and field emission probe tube techniques (> 5.8 ev), a study

of the anisotropy of the electronic work function of metals for both zero

electric field and extremely high electric fields (0.1 V/_ to 10 V/_ per-

pendicular to the surface was initiated nine months ago. The final results

of this study for uniform surfaces are presented here.

Smoluchowski 1 has provided the only picture for describing the

work function differences between various planes consistent with experi-

ments: this picture is extended here to include electric spin interaction

and applied electric fields. The work function is assumed to be the sum

of a volume contribution and a contribution due to the surface double layer.

The latter is a function of the surface plane and can be described in the

following way. Every atom can be associated with a ceIlular polyhedron

composed of all points nearer to this particular atom than to any other atom.

Since the charge distribution in a surface cellular polyhedron differs from

one in the bulk, a surface double layer is obtained. Two effects cause a

redistribution of charge in the surface cellular polyhedrons. The spread of

charge is approximately isotropic and is associated with the bulk contribution

to the work function. Because of charge smoothing the surfaces of equal

charge density are more nearly planar than before. The two effects have

opposite influences and are comparable in magnitude, necessitating numerical

computation. Applied electric fields influence primarily the degree of smooth-

ing while electron spin interactions decrease the spreading.
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The work function differences between four planes of tungsten

((ii0), (211), (i00), (iii)) were calculated for various values of the free

electron density per atom F - see Figure i. For F > 0.6, the work func-g o-

tions decrease in the proper experimentally verified sequence _ 110 > _ 211> _i 00>

_iIi whereas for Fo < 0.6 the incorrect sequence _ii0 > _ i00 > _ 211>

iii was obtained, indicating that Smoluchowski's linear extrapolation to F° =
1

i/6 was not mathematically correct. However, this reversal may be due to

a breakdown of the Thomas-Fermi model at low particle densities.

Table I shows representative measured work functions for alleged

single crystal planes of tungsten. With the exception of the (ii0) plane,

essentially the same values are measured for each plane. The (ii0) plane is

unusual in that its work function is 0.6 ev to 1.3 ev greater than that of poly-

crystalline tungsten (_ 4.6 ev) and at least 0.4 ev greater than the next highest

work function plane (_211 _ 4.8 ev.* Should_ ii0 _ 5.8 ev, its measure-

ment by thermionic techniques would be almost _impossible due to thermal

disorder. Because of the extremely good agreement between contact potential

difference measurements and field emission measurements, the value _{ =
110

5.9 ev is usedwhen necessary. To best fit our estimate of _ ii0 - _ iii -

1.5 ev, F = 0.95 is used in all subsequent calculations of work function

changes due to extremely high applied electric fields. To best fit thermionic

data, one should use F o_ 0.3.

Figures 2 and 3 show the change in work function with applied electric

field strength for the (ll0), (21 l) (100) and (11 l) planes of tungsten for field

emission and field desorption electric fields, respectively.

For field emission conditions, results are presented for E <- 1 V/_

a value substantially greater than the breakdown field for tungsten

(E _ 0.7 V/_ , Although field desorption electric fields can exceed 5 V/_,

the results of this analysis are physically meaningful only up to that strength.

* A recent field-electron emission energy distribution measurement yielded¢ If0
2

8.78 ev . However, this result is not confirmed by other researchers as yet.
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For IEI <_ 0.4 V/_ , 15 _ is approximately the same for both cases and

more significantly 16_I < 0.2 ev. Therefore, typical field emission

electric fields (E _ 0.3 V/_ ) cannot change the work function of any plane of

tungsten as measured usir_ thermionic techniques ( _ Ii0 _ 5.2 ev) and field

emission probe tubes (_ Ii0 > 5.8 ev).

Figures 4 and 5 show the polarizability of the surface atoms of

tungsten on four different planes for both field emission and field desorption

electric fields. The polarizabilities increase with field strength for the

former because there is no limit to the electronic roughness of the surface.

Whereas field desorption fields can produce only an electronically smooth

surface with a finite maximum work function decrease that occurs in this

formulation for E _ 5 V/_ . The change in charge spreading is negligible

here but could be significant for IE I > 5 V/_. Since tungsten field

desorbs for E _ 5 V/E, this effect is of minor significance.

Finally, Figure 6 shows the stress due to a field desorption electric

field . At field evaporation E _ 5 V/_, the stresses are of the same order

of magnitude as the tensile strength ( _ i0 II dynes/cm2).

Extremely high electric fields (0.1 V/_ to i0 V/_ ) perpendicular

to the surface cannot account for the large discrepancies (0.6 ev) between

field emission and thermionic emission measured work functions. Those

differences appear to be due to thermal rearrangement, patch effects, field

emitter flats, misinterpretation of data or other as yet unknown phenomena.

The polarizability and stress calculations are important to field emission

and field ion microscopy, and similar calculations are planned for surface

and kink sites.

References:

I. R. Smoluchowski, Phys. Rev. _ 661, (1941)

2. R. D. Young andH. E. Clark, Appl. Phys. Letters 9, 265 (1966)
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TABLE I

Representative Work Function Values for Clean Single
Crystal Planes of Tungsten in Electron Volts.

Plane Mea surement Technique

Thermionic Field Emis s ion

(110) 5.20 5.9

(211) 4.78 4.85

(100) 4.65 4.72

(111) 4.30 4.39

Contact

Potential Difference

5.9

4.7

4,4
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THEORETICAL WORK FUNCTION DIFFERENCES

BETWEEN FOUR PLANES OF TUNGSTEN AS A FUNCTION

OF THE FREE ELECTRON DENSITY
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WORK FUNCTION INCREASES OF FOUR PLANES

OF TUNGSTEN DUE TO A FIELD EMISSION ELECTRIC FIELD
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POLARIZABILITY OF SURFACE ATOMS OF TUNGSTEN

FOR FIELD EMISSION ELECTRIC FIELDS
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MECHANICAL STRESS ON FOUR PLANES OF TUNGSTEN

DUE TO FII]I.D DESORPTION ELECTRIC FIELDS

ooE
(Jr) u

r't" (b
b-- c-
U9 >_

"O

II
10

10

10

ELECTRIC

Fig. 6

A2-19



Thermionic Converters--Characteristics of Thermionic

•Plasma Diodes with Gas Mixtures

G. L. Schrenk A. Kaufman

The results of these models are currently being studied. Pre-

liminary results indicate that in the ignited mode (and near themaximum

power point) negligible improvement can be expected. In the unignited

mode, however, sizeable improvements can be expected. The engineer-

ing significance of these preliminary findings is currently under study.
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3.1 5) The Design of Absorption Towers Dissolving_H 2 and

02 in Aqueous_KOH

3.1.1 Introduction N 6.?-22 168
Since kinetic limitations of any fuel cell (or electrolytfc) ....

system depends on mass transport in the electrolyte, reliance on the

porous electrode might be side-stepped entirely. As an alternate

type of system, fuel gas could be dissolved into the electrolyte in a

gas-liquid contact section and this fuel-enriched liquid could then

be passed over electrodes where the appropriate oxidation and re-

duction reactions take place. Depleted electrolyte could then be re-

circulated into the contact towers. The arrangement is shown

schematically in Fig. 3. i-i.

This report describes the determination of the feasibility of

an absorption system integrated with the operation of a fuel cell. The

absorption system saturates a 4N KOH electrolyte solution with oxygen

and hydrogen, and this study evaluates the size flow and power con-

sumption characteristics of the towers. Coupled with assumptions

that are reasonable for a 200 watt fuel cell operating at 20°C, tower

heights at 3.6 ft for H 2 column and 5.1 ft for the 02 column with one

square foot cross sectional area are indicated. Pumping losses are

estimated to be 26% of the available power, thus indicating border-

line feasibility. Note, however, that the design specifications were

arbitrarily chosen, and, with slight modifications, the system can be

shown to be completely feasible, i.e., optimization can be readily

accomplished.
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3.1.2

the absorption system. These assumptions apply to both the H 2

0 2 towers.

Design Assumptions

The following assumptions were made when designing

and

a. A packed tower is the most efficient method, in

terms of tower volume, for absorbing a gas in a

liquid on a small scale, i.e., to supply the needs

of a 200 W fuel cell.

b. Steady state transfer of gas into the liquid stream.

c. Pure gas is being fed into the bottom of the tower,

d. Pure liquid is being fed into the top of the tower.

e. The liquid film is the principle resistance to diffusion,

and, therefore, the liquid at the interface may be

assumed to be in equilibrium with the main body of

the gas.

f. The gas and liquid phases pass counter-current to each

other.

g. The liquid is non-volatile.

h. The volumetric flow rate of gas through the tower

remains constant.

i. The density of the liquid throughout the tower is constant.

j. The operation takes place in the presence of gravity

(g = 32.2 ft/sec2).

k. The amount of gas dissolved in the electrolyte at a

particular pressure can be expressed by a Henry's law

constant because of the low gas concentrations involved,

1. The fuel cell converts 50% of the available chemical

energy into electrical energy.
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m. No flooding is to occur in any section of the column.

n. The column operates isothermally.

o. The viscosity of the liquid throughout the column is

constant.

p. The diffusion coefficient of the liquid throughout the

column is constant since it can be shown that the

concentration of dissolved gas is very small through-

out the length of the column.

3.1.2.1 Design Specifications

All calculations in this report will be based on the following de-

sign specifications. They are believed to be reasonable values for possible

operating conditions.

a. The temperature of the columns is 25°C.

b. The pressure of the incoming gas to the columns is 5 atm.

c. The cross sectional area of the columns is one square foot.

d. The fuel cell is producing 200 watts of electrical energy.

e. The towers will be packed with stoneware Raschig rings (6)

whose diameter and height equal one inch and whose wall

thickness equals 3/32 inch.

f. The concentration of the gas in the electrolyte at the

bottom of both columns will be specified to be in equilibrium

with a pressure of 3_ atmospheres of the pure gas.

3.1.2.2

column.

Design Variables

The following design parameters will be calculated for each

a. The pressure of the gas effluent at the top of the column.

b. The concentration of the dissolved gas in the liquid effluent.
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C.

d.

e.

f.

g.

h.

i.

j.

k.

1.

m.

n.

o.

The

The

The

The

The

The

The

molar gas flow rate per unit cross sectional area.

mass gas flow rate per unit cross sectional area.

volumetric gas flow rate per unit cross sectional area.

molar liquid flow rate per unit cross sectional area.

mass liquid flow rate per unit cross sectional area.

volumetric liquid flow rate per unit cross sectional area.

height of the columns.

The volume of the columns.

The volume of the columns occupied by gas.

The volume of the columns occupied by liquid.

The contact time of the liquid.

The contact time of the gas.

The moles of gas absorbed per hour and fed to the fuel cell.

A table of the calculated values of these parameters is

presented in Section 3 .i. 8.

Derivation of the Design Equations

Mass Transfer

Restricting the design to steady state transfer of a solute

from a gas stream to a liquid stream, it is evident that all solute diffusing

from gas to interface must diffuse at the same rate from the interface to

the main body of liquid, hence

N = kg (P-Pi) = k1 (ci-c)

N

p=

C =

Pi=-

Ci=

kg =

kl=

rate of mass transfer, ib mole/hr ft2.

3 .1-1

partial pressure of diffusing gas in the main stream, atm.

bulk concentration, ib mole/ft 3.

partial pressure of diffusing gas at the phase boundary, atm.

concentration at the phase boundary, ib mole/ft 3 .

individual or gas-film coefficient, ib mole/hr ft2 atm.

individual or liquid-film coefficient, ib mole/hr ft2 ib mole ft-3
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Equation i has little practical utility since it is necessary

to know both kg and kI as well as the equilibrium relation between Pi

and ci in order to calculate N. It is convenient, therefore, to employ

overall coefficients K1 and Kg which may be used to calculate N without

knowledge of ci or Pi"

N = Kg(P-Pe ) = Kl(ce-c) 3.1-2

Ks

p =
e

Ce--

overall mass transfer coefficient, Ib mole/hr ft2 arm.

overall mass transfer coefficient, ib mo!e/hr ft21b mole ft-3

partial pressure of the solute over a solution having the

composition of the main liquid stream, c, atm.

concentration of a solution in equilibrium with the

solute partial pressure, P, Ib mole/ft 3.

Thus, P-P is the overall driving force expressed in partial
e

pressure units, and c e-C is the overall driving force expressed in

concentration units. The overall coefficients K and K_ have great utility,
g 1

and most experimental studies of mass transfer between phases give informa-

tion as to Kg or K1, but not kg or k 1.

For the present system, 0 2 and H 2 absorption in KOH, it

will be assumed that the liquid film offers the principal resistance to

diffusion, and, therefore, the liquid at the interface may be assumed

to be in equilibrium with the main body of the gas i.e., ci = c .' e

The driving force is, therefore, the difference between the concentrations,

c and c, obtained from the equilibrium and operating lines respectively,
e

at any partial pressure, P, in the main body of the gas.

Since c. = _ , substitution in Equation 3.1-1 yields
1 e

N = kI (ce - c)
3.1-3
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But from Equation 3.1-2, it is evident that N = K1 (c

for our particular system,

% that- c), so
e

For a packed tower, the following is true:

(N) (a) (dV) = kI (a)(Ce-C) dv 3 .i-5

a = interracial area per unit volume, a function of the

type of packing being used, ft2/ft3.

Now consider the gas liquid contact process to consist of

counter-current absorption of pure gas into i_,,_ KOH The absorbent

enters at the top of the tower containing LM Ib moles per hour of

solute free non-volatile liquid per square foot of tower cross section.

In passing through to the lower end of the tower, the solute concentration

in the absorbent increases to X BIb moles of solute per Ib mole of absorbent.

X B equals some fraction of XeB corresponds to a composition, which is

in equilibrium with the solute partial pressure at the bottom of the column.

The gas to be treated is pure and it enters at the bottom

of the column at the rate GMB ib mole per hr ft2. In designing the

column, it is assumed that the volumetric flow rate of the gas remains

constant. This condition dictates a pressure drop along the length of

the column proportional to gas absorption as:

RT (GMB - GMT) (RT) ,(tgA__l) 3. I-6
PB-P =An _=

r Vg (Vg)

PB =

PT =

GMB=

GMT =

pressure of pure gas at the bottom of the column, atm.

pressure of pure gas at the top of the column, atm.

molar flow rate of gas at the bottom of the column, lb

mole/hr ft 2 .

molar flow rate of gas at the top of the column, lb mole/

hr ft 2 .

moles absorbed, moles.

temperature of column, o R.
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R

vg=
A=

gas constant, ft 3 atm/°R lb mole.

the volume occupied by the gas in the column, ft 3.

cross sectional area of the column, ft 2.

tg = contact time of the gas in the column, hr.

Note also that d tg/d Vg is constant throughout the column

and is equal to tg/Vg.

Let

RT tg A _

V
g

constant =

PB - PT = _ (GMB - GMT) 3. l-6a

Equation 3.1-6a can be applied to any point in the column so that

PB - P = _ (GMB- GM) 3.1-7

I PB - PT )
e = GMB--- -GMT

PB - P- \
' (G

GMB - GM1 j M - GMB) 3.1-7a

PB - PT

GM +[PB- GMB(GMB- GMT) ]
3 .i-8

Equation 3.1-8 clearly shows the linear dependence Of P on G M and

can be used to calculate P at any point. For the top and bottom of

the column, PT and PB can be calculated from Equation 3. l-6a.

Design considers the impossibility of absorbing all the

gas since that would mean that GMT must equal zero and, correspondingly,

PT = 0. This is an undesirable situation and, clearly, the value of GMT

must be compromised to yield some finite value.
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3.1.3.2 Material Balance

An overall material balance around the column can be

written as follows:

(L M) (XB) = GMB - GMT 3.1-9

or

Similarly at any point in the column

(L M) (XB-X) = GMB - G M 3.1-10

(L M) dX=d G M 3.1-11

(L_) dc = dG M = L M dX 3.1-11a

L = mass flow rate per unit area, lb/hr ft 2.

p = density of the liquid, lb/ft 3 .

Combining Equation 3.1-11 with the diffusional relation, Equation

3.1-5, there is obtained

LMdX= (KI) (a) (Ce-C) (dV/h) 3.1-12

LMdX= (KI) (a)(Ce-C) (dh) 3. i-12a

d h = differential tower height, ft.

Integrating Equation 3.1-12a gives

h = LM IX B dX
% K1 a (Ce-C)

3 .1-13

Substituting Equation 3.1-11a into Equation 3.1-13 gives

h
L /CB dc
P _C T Kla (Ce - c)

3.1-14
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Since c T is specified to be pure depleted solvent,

_0 c d c
h = a) B 3.1-15

(C e - c)

3.1.3.3 Tower Design Correlations

In order to evaluate Equation 3 1-1.5, a knowledge of K1

is needed since a_ can be obtained from the literature for the particular

packing being considered. Since no theoretical model has yet proved

adequate (1) to predict absorption rates in packed columns, empirical

correlations are recommended. One such correlation that adequately

describes a great number of systems was proposed by Van Krevelen and

Hoftijer(2,3).

._Kl(_ 2/ 2 1/3P g) = .015(Re)2/3 (sc) l/3
D

= .015

3.1-16

-.4L/p
and a/a = 1 - e 3.1-16a

p = density of the solution, lb/ft 3.

= viscosity of the solution, lb/ft hr.

D = diffusion coefficient of the gas in the solution, ft2/hr.

g = gravitational constant, ft/hr 2.

= effective interfacial area of packing, ft2/ft 3 .

a = theoretical interfacial area of packing, ft2/ft 3.

Rearranging Equation 3.1-16 in terms of
n

for a, there is obtained

and substituting
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[ L 1K1 = .015 (1-e-'4L/p) a

2/3

(l___) 1/3
(g)1/3 (P) (D) 2/3

3.1-17

If it is assumed that all physical parameters remain constant in the

column, utilizing Equation 3.1-17 in Equation 3.1-15 and taking the

constant parameters outside the integral, one gets the very important

result,

(a___) 1/3 -4/3 _e-AL/p 2/3 /0 c

B d
h= (66.7) (p) ( p ) (1 ) (D) -2/3

C

Ce-C

3.1-18

Obviously to solve Equation 3.1-18 for the tower height,

one needs experimental data giving c e as a function of c. Note, however,

that literature data can be utilized to give c = f (P) (saturation con-
e

centration as a function of the partial pressure above it), but by

employing Equations 3.1-8, 3.1-11a), this data can be converted to

give c as a function of c.
e

3.1.3.4 Flow Rate, Liquid

One parameter is still undefined in Equation 3.1-18, and

it must be evaluated before the tower height can be calculated, and

this parameter is L.

At this point, it should be observed that the bottoms of

the absorption towers is being fed into a fuel cell. The amount of

dissolved gas coming out of the towers is then fixed by the power

requirements of the cell.

For instance, in this problem, it is specified that the

electrical output of the cell is 200 watts. Therefore, in one hour, it

will produce an energy equal to 200 watt hours.
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• 2 Kwatt hrs x 2.65 x 106 ft lb/Kwatt hr x .324 cal/ft lb x 1 Kcal/1000 cal =

170 Kcal

Now if one assumes a 50% conversion of chemical energy (free energy

of formation) to electrical energy, then 340 Kcal of chemical energy

must be produced. Allowance is thus made for overvoltage and resistive

losses on a crude estimate basis.

We know- that the reaction H 2 + 1/2 02-.- H20 (25°C/I atm)

produces 57 Kcal/g mole of H20. Therefore, 6 g mole of water will have

to be produced in order to meet the power requirement.

If it is assumed that all oxygen and hydrogen fed into the

fuel cell is consumed, i.e., c(xnpletely reacted, then 6 g tool per hour

of H 2 are necessary, .0132 ib mole H2/hr, and 3 gmol per hour of O 2

are necessary, .0066 ib mole O2/hr.

Therefore, the liquid flow rate of the 02 tower is equal to

L = (.0066)/(c B) (A) (1/P) 3 .1-19

and the liquid flow rate of the H 2 tower is

L = (.0132)/(c B) (A) (i/P) 3.1-20

Note that the cross sectional area of both towers is arbitrarily specified

at 1 ft2, and the tower height can be readily calculated using

Equation 3.1-18.

3.1.3.5 Contact Times

One can now go about determining tg and t 1, the contact

times of the vapor and liquid in the tower. In obtaining the contact

time of the vapor, it is assumed that the vapor of the inlet is at a

pressur_ of 5 atmospheres and e designates the void volume coefficient.
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tg

Vg

V

= Vg / 3.1-21

= volume of tower available for vapor flow, ft 3.

= volumetric gas rate, ft3/ft 2 hr.

Vg
Vg = V¢ 3: . 1-22

Vg + V1

Vg and V 1 are also proportional to the volumetric flow rates of the

gas and liquid respectively, therefore,

m

V
Vg =v¢ _ x 3.1-23

V+V

X

V = volumetric liquid rate, ft3/ft2hr.

But V = 77 x GMB 3.1-24

X

V=L/p 3.1-24a

Therefore, substituting Equation 3.1-24, 3.1-24a in Equation 3.1-23

and placing Equation 3.1-23 in Equation 3.1-21, we obtain

But

tg =
V E _

A(77 x GMB + L/p)

V =hA

3.1-25

3.1-26

Therefore,

tg =
hc

77 GMB + L/p

It is also obvious that

Vg = V¢

77 x GMB

77 XGMB +L/p

Similarly, the contact time of the liquid in the tower is

hE
t 1 =

77 XGMB + L/p

and the volume of the tower occupied by the liquid is

A3-12
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L/p
V 1 = Vc 77 x GMB + L/p 3.1-30

3.1.3.6 Flooding Limits

All of the preceding five equations, 3.1-25, 27, 28, 29, 30,

necessitate a knowledge of GMB , the molar gas flow rate coming into

the bottom of the column. This parameter can be obtained by considering

flooding requirements dictated by the specific tower (10) .

The flooding rate can be calculated from the following equa-

tion.

In Gf2 a_l-2 L 1/4 _ 1/8

g¢3 PgPl _w -2 = -4 G 01 3.1-31

Gf

g __

G =

L =

=
W

flooding rate expressed as mass flow of the gas phase

per unit area of column cross-section, Ib/ft2sec

acceleration due to gravity, ft/sec 2

mass flow rate of gas phase, Ib/hr ft2

2
mass flow rate of liquid phase, Ib/hrft

viscosity of water, ib ft-I hr-I
m

The usual technique is to allow G to equal 60 to 80%

of the flooding rate; therefore Eq. 3.1-31 can be rewritten in terms of

Gf only as

-2 I/4
Gf 2 (a) pl L Og

In -2 = -4 Z 3600 Gf Pl
(g) (c) 3 (pg) (Pl) _w

i/8

3.1-32
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where Z is some coefficient ranging between . 6 and . 8 Obviously

then

GMB = (Z) (3600) (Gf)/MWg 3,1-33

The equations derived and enumerated in Section 3.1.3

are sufficient to calculate all column parameters, and this will be

demonstrated in Section 3.1.5. However before any column calcula-

tions are performed, some physical properties of the system will be

given.

Physical Data

Physical data pertaining to both the 0 2 and H 2 absorp-
tion towers

a) Viscosity of 4N KOH (4) at 18°C

= 1.54 c.p. = 3.74 lbm/ft hr

b) Density of 4N KOH at 20°C (5)

Pl = 1.18 g/ml = 73.5 lb/ft 3

c) MW of 4N KOH at 20°C

MW 1 = p (18) = (1.18)(18) = 21 lb/lb mole

d) The towers will be randomly packed with stoneware Raschig

rings (6) whose diameter and height equal 1 inch and whose

wall thickness equals 3/32 inch

¢ = 68%

a = 58 ft2/ft 3
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b)

Physical data pertaining specifically to the 02 tower

the diffusion coefficient of 02 in 4N KOH, 20% by weight

KOH, at 25°C, and extremely dilute 02 content, (7) is

D 10 .5 2 ft 2= cm /sec = 3.9 x i0-5 /hr

In order to generate solubility data for % in 4N KOH, it

will be assumed that a Henry's law constant applies through-

out the length of the column. Therefore XO2 = P/Ho2 (X is

the mole fraction of 02 dissolved P is the pressure above

the solution, and HO2 is the Henry's Law constant). Using
(7)

the data of Gubbins and Walker, the solubility of 02 at

a pressure of one atmosphere in 4N KOH, 20% by wt. KOH, at

25°C is 25 x 10 -3. g mole/liter.

-3

Xo 2 = ,2555x 10 = 4.6 x 10 .6 and therefore

HO2 = P/Xo2

-6 5 arm
= i/4.6 x I0 = 2.2 x i0

mole fraction
3,1-34

c) P , the density of the oxygen gas at 70°F
g

utilizing the perfect gas law, .41 lb/ft 3

and 5atm is,

Physical data pertaining specifically to the H 2 tower.

No information could be found regarding the diffusion coeffi-

cient of H 2 in a 4N KOH solution, however the following

assumption will be utilized.

in pure water in pure water
DH 2 DO 2

in 4N KOH in 4N KOH
DH 2 DO 2
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DH2 in pure water = 5.85 x 10.5 2cm /sec (8)

DO2 in pure water = 1.9 x I0-5 cm2/sec(7)

DO2 in 4N KOH = 10-5 cm2/sec (7)

b)

Therefore, DH2

12 x I0-5 ft2/hr

in 4N KOH equals 3.1 x 10 .5 cm2/sec

Geffken(l I)

4N KOH to

or

shows that the ratio of the solubility of H 2 in

H 2 in pure water, at 25°C is 0.3 .

Th erefore

HH2 in 4N KOH =

HH2 in pure water

HH2 in 4N KOH =

1
• 3 HH2 in pure water

= 7.5 x 104 at m/mole fraction (9) ,

25 x 104 arm/mole fraction

c) The density, P of the hydrogen at 70°F and 5atm is
g

utilizing the perfect gas law, .026 lb/ft 3 .

SO

3.1.5 Design of the 02 Tower

The first step in the design of the 02 tower is to calculate

the liquid flow rate, L , based on the fuel needs of the electrochemical

cell. Eq. (19) will be utilized.

A = 1 ft 2

Pl = 73.5 lb/ft 3

To solve Eq.

the concentration of 02

to Eq. (34)

xB =

(19) one must also have knowledge of c B ,

dissolved in the effluent solvent. Referring
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and for dilute solutions it can easily be shown that

X = (cJ(MW I )/Pl 3.1-35

Substituting Eq. (35) in Eq. (34) gives

c = (P)(Pl)/(H)(MW1 ) 3.1.36

p the pressure with which the dissolved gas is _n equilibrium, since

the effluent concentration is specified to be in equilibrium with a

pressure of 3 atm , P = 3atm.

MW 1 = 21 lb/lb mole

HO2 = 2.2 x 105 atm/mole fraction

c B is calculated to be 4.8 x 10 -5 lb mole/ft 3

L is calculated to be 10,200 lb/hr ft 2

L M is calculated to be 482 lb mole/hr ft 2

Referring to Eq. (9)

-5
X B = 1.36 x 10

L M = 482 lb/hr ft 2

-3
(X B)(L M) = 6.6 x 10

lb mole
ft 2 hr

What immediately becomes apparent is that if GMB >> 1 lb molehr ft 2

then GMT approximately equals GMB One can calculate GMB

Eq. (32)and Eq. (33).

from

A3-17



a = 58 ft2/ft3- MW = 32
g

Pl = 1 54 c.p. at 20°C

pw = 1.06 c,p. at 20°C

g = 32.2 ft/sec 2

¢ = .68

Pg = .41 lb/ft 3

Pl = 73.5 lb/ft 3

Z = .6

Solving Eq. (32) for Gf yields .25 lb/ft 2 sec

Solving Eq. (33) for GMB yields 16.9 lb moles of

G B is calculated to be 540 lb/hr ft 2

O2/ft 2 hr

lb mole

Indeed it is evident that GMB>> 1 hr ft z , therefore GMB _ GMT

GM_ 16.9 lb moles of O2/hr ft 2 . Referring to Eq. (8) a necessary con-

sequence of the preceding statement is that PB _ PT _ P _ 5 atm.

One can now utilize Eq. (18) to calculate the height of the

tower, Note that the assumption concerning the constant pressure through-

out the length of the column considerably simplifies the integration since

c is merely taken to be constant throughout the column.e

c is calculated using Eq. (36) with P equal to 5atm. c
e -5 e

equals 8 x 10 lb mole/ft 3.

Substituting appropriate values for constants in Eqo (18)

L = 10,200 lb/hr ft 2

a = 58 ft2/ft 3

g = 2.5 x 10 -6 ft/hr 2

U = 3.74 lb M/ft hr

p = 73.5 lb/ft 3

D = 3.9 x 10 -5 ft2/hr

- ft 3c e = 8xl0 5 lb mole/

c B = 4.8 x l0 -5 lb mole/ft 3
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h comes out to be 5.1 ft.

Referring to Eq. 3 .i-26, V = 5.1 ft 3

" " Eq. 3.1-28, where e = .68, Vg = 3.14 ft3

" " Eq. 3 .I-27, tg = 2.4 x 10-3 hr

" " Eq. 3.1-30, V1 = .33 ft 3

-3
" " Eq. 3.1-29, t 1 = 2.4 xl0 hr

/

.1.6 Design of the H 2 Tower

The first step in the design of the H 2 tower is to calculate

the liquid flow rate, based on the fuel needs of the electrochemical cell.

Eq. 3 .1-20 will be utilized. However, in order to solve Eq. 3.1-20 one

must also have knowledge of c B, the concentration of H 2 dissolved in

the effluent solvent. Referring to Eq. 3.1-34

P = 3 atm

91 = 73.5 ib/ft3

MW 1 = 21 Ib/ft3

HH2 = 2.5 x 105 atm/mole fraction

Referring to Eq. 3.1-34, cB equals 4.2 x 10-5 ib mole/ft 3

" " Eq. 3.1-20, L equals 23,000 Ib/hr ft2

LM is calculated to be 1i00 Ib mole solvent/hr ft2

Referring to Eq. 3.1-9

-5
X B =1.2 xl0

L M = Ii00 Ib mole/hr ft2

(XB)(Lh_ = 1.32 x 10.2 Ib mole/ft 2 hr
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GMB > >

One can calculate GMB from Eq. 3 .1-32 and Eq. 3.1-33.

are the same as those employed in the design of the 0 2

that

What immediately becomes apparent is that if

1 hrlb ft2m°le , then GMT approximately equals GMB. One can

All constants

tower except

m-- .8

L = 23,000 lb/hr ft 2

pg = .026 lb/ft 3

Solving Eq. 3.1-32 for Gf yields .022 lb/ft 2 sec

Solving Eq. 3.1-33 for GMB yields 31.7 lb moles of H2/hr ft 2

G B is calculated to be 63.4 lb/ft 2 hr

Indeed it is evident that GMB > > 1 lb mole therefore
hr ft 2 '

GMB_GMT_G M_31.7 Ibmoles of H2/hrft 2. Referring toEq. 8, a

necessary consequence of the preceding statement is that

PB _ PT _ P _ 5 arm.

One can now utilize Eq. 18 to calculate the height of the

tower. Because of the constant pressure, c e is merely taken to be a

constant throughout the length of the column.

c eis computed using Eq. 36 with P equal to 5 atm, and

HH2 = 2.5x 105 arm/mole fraction, c e = 7 x10 -5 Ibmole/ft 3 .

All constants in Eq. 18 are the same as those employed in the design of

the 0 2 tower except

L = 23,000 Ib/hr ft 2
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c B = 4.2 x 10 .5 lb mole/ft 3

c e = 7 x 10 .5 lb mole/ft 3

D =12 x 10 .5 ft 2 /hr

hcomes out to be 3.2 ft.

Referring to Eq. 26, V = 3.2 ft 3

" " Eq. 28, Vg = 2.18 ft 3

" " Eq. 27, tg = 9 x 10 -4 hr

" " Eqo 30, V1 = .33 ft 3

" " Eq. 29, t 1 = 9 xl0 -4 hr
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3.1.7 Summary of Design Parameters of the Towers

Parameter

PB' (atm)

PT' (atm)

cB , (lb moles dissolved gas/ft 3

G B ,

G T ,

GM B

v-B, (ft3

(ft3

L B _ LT

(lb gas/ft 2 hr)

(lb gas/ft 2 hr)

GMT (lb moles gas/ft 2 hr)

of gas/ft 2 hr)

of gas/ft 2 hr)

, (lb solvent/ft 2 hr)

LMB _ LMT , (lb mole solvent/ft 2 hr)

X X

V B _V T , (ft 3 of solvent)

h , (ft)

V, (ft 3)

Vg , (ft 3

V 1 , (ft 3

of tower occupied by gas)

of tower occupied by liquid)

tq = t 1 , (hr)

of solvent)

(c B )(L B )(1/p ),

0 2 Tower

5

5

4.8 x 10 -5

540

540

16.9

1300

1300

10,200

482

138

5ol

5.1

3.14

.33

2.4 x 10 .3

(Ib moles of gas absorbed/hr ft2)

.0066

H 2 Tower

5

5

4.2 x 10 .5

63.4

63.4

31.7

5350

5350

23,000

1,100

313

3.2

3.2

2.18

.275

9 x 10 .4

.0132
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3.1.8 Pumping Requirements

As a crude approximation for the pumping requirements

necessary, let the work performed by the pumps equal the mass

transported times the differential height.

3.1-37

ho2 = 5.1 ft

hH2 = 3.2 ft

= 10,200 Ib/hr ft 2
LO 2

= 23,000 lb/hr ft 2
LH 2

GO2 = 540 lb/hr ft 2

GH2 = 63 Ib/hr ft 2

-2 kw hr. 52 watt hr
Therefore, W = 137,800 ftlb/hr= 5.15 x 10 =

hr hr

Our fuel cell produces 200 watts, so 26% of the power

must be utilized for pumping. Based on the given assumptions, this

system lies just on the borderline of feasibility. If different speci-

fications were given, it is apparent that complete feasibility could

be achieved for tower design. A full analysis requires combined

treatment of a fuel cell model.
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3.1.9

a

a

A

B

C

D

Nomenclature

- theoretical interracial area of packing, ft2/ft3

- effective interracial area of packing, ft2/ft3

- cross-sectional area of the column, ft2

- used as a subscript refers to the bottom of the column.

- concentration, ib/ft3

- diffusion coefficient of the gas in the solvent, cm2/sec, ft2/hr

e - used as a subscript refers to an equilibrium condition between

the concentration of solvent and ....L:_ gas above it.

f - used as a subscript refers to a flooding condition.

g - used as a subscript refers to the gas phase.

g - gravitational constant, ft/sec 2 , ft/hr2

G - the mass flow rate of the gas, ib/hr ft2 , ib/sec ft2

h - height of the column, ft

H - Henry's Law constant, atm/mole fraction

i - used as a subscript refers to an interface

k - individual mass transfer coefficient, Ib mole/hr ft2 arm,

ib mole/hr ft2 ib mole ft-3

K - overall mass transfer coefficient, Ib mole/hr ft2 atm,

Ib mole/hr ft2 ib mole ft-3

1 - used as a subscript refers to the liquid phase

L - the mass flow rate of the liquid phase,lb/hr ft2

M - used as a subscript refers to molar quantities

MW - the molecular weight, ib/ib mole

An - no. of moles absorbed in the column, moles

N - rate of mass transfer, ib mole/hr ft2
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P - pre ssure, aim

R - gas constant, ft3 atm/°R Ib mole

Re - Reynolds number, dimensionless

Sc - Schmidt number, dimensionless

T - used as a subscript refers to the top of the column

T - temperature, OR

V - volume of the column, ft3

- volumetric flow rate of the gas phase, ft3/ft2hr

X

V - volumetric flow rate of the liquid phase, ft3/ft2hr

W - power output of the pumps, ft ib/hr, kw, watts

w - used as subscript refers to water

X - mole fraction, dimensionless

e - void volume coefficient, dimensionless

k[ --viscosity of the liquid phase, centipoise, IbM/ft hr

Q - density of the liquid phase, Ib/ft3
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OVERPOTENTIAL-TIME VARIATION FOR

GALVANOSTATIC CHARGING WITH POTENTIAL

DEP EN DEN T CAPAC ITANC E

Leonard Nanis, Phillippe Javet_

The non-linear differential equation for the time variation-of over-

potential during galvanostatic charging is solved by introducing a close

approximation for the second term of rate equation. The results obtained

are in close agreement with known solutions, covering all values of

transfer coefficient, and are simple in form. Further, the incorporation

of potential dependent capacitance is readily accomplished. Computa-

tions for such cases are shown to have a considerable effect on the

overpotential trans tent.

A simple and useful relation describing the time variation of over-

potential, T], following the switching on of a constant current density,

iT' has been determined. In the absence of mass transport effects
(activation overpotential only), two separate reactions take place -

I. The normal Faradaic relation, involving current density

JF"
2. Charging of the double layer capacity, C, using current

density JC"

It is well-known that -

JF = exp(c_ ZF .)

"_c = c d_a_dt

JT -- JF + Jc

exp )
(per unit area)

Eqn. 3.4-1

Eqn. 3.4-2

Eqn. 3.4-3

In general, the differential equation obtained from the above relations is

non-linear and cannot be integrated. Two types of simplification can be

made.
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I.

•

Let C be independent of potential. This has been done by some

authors I, 2,3 who can ultimately obtain the relation between

time and overpotential - but only for particular values of the

coefficient of transfer e (i.e. e = 0; c_= 0.5; cz = i).

Approximate the value of JF by one of the classical methods

(linearization, Tafel). This has been done for the decay by

Frumkin 4, but the application of Tafel relation for the charging

transient has never been used, owing to the fact that this

approximation does not pass through the origin of the _3-

coordinate, which leads to very important errors at small

times.

The present approach consists of modifying the Tafel equation in order to

let it pass through the 13- t origin. One obtains in this case -

JT: % i + c
\ RT / dt

This relation can easily be integrated and has been compared to the

analytic equations obtaine_ by Karasyk 3 for some particular values of e.

The agreement between the new approximation and the analytic solution

has been found to be very satisfactory. The advantage of the present

treatment is that Eqn. 4 can be integrated even if C is not a constant.

The actual potential dependence of electrode-electrolyte interfacial

capacitance has not been treated previously. For a linear dependence

of capacitance with overpotential given as

C +2C 1T]o

co

c(n) =

the result is obtained as

C Imt = (iT +I Jo) o I]+ C 1 I]2 +E (-l)mC
m= 1 o mb

+ m___j (-1.) m 2C 1 I m (mbl]- 1 ) e mb'_ -
= m2 b _-
Co

Zm:, _ ]]

mb_] •
e +

Eqn. 3.4-4

Eqn.3 .4-5

Eqn. 3.4-6

= = Jo +where b _ zF/RT and I /Jo JT"

A3-29



The summation terms in Eqn. 6 are rapidly convergent and are readily

applied to obtain the time-overpotential relation, since most of the terms

are repetitive. Two hypothetical cases of capacitance variation have been

treated:

Case h Capacitance increasing with overpotential

-2
C(_]) = 4.0 + 53.4 I], bF cm

Case 2: Capacitance decreasing with overpotential

-2
C (I]) = 20.0- 53.4 1] , _F cm

-2
Case 3- C = 12 _F cm

-3 -2
Substitution of these relations in Eqn. 6 for Jo = l0 Acm ' JT = 0.1
Acre -2 , c_ = 0.5, z = 1, T = 300°K leads to a steady state overpotential

of 238 mV in all cases, but the transient is cOnsiderably different. At

20 microseconds, the overpotential has attained a value of 170 mV for

Case 3, whereas Case 2 has reached only 126 inV. Case 1 at 20 micro-

seconds has reached 205 mV and has reached steady state at 30 micro-

seconds, while Case 2 and Case 1 converge after 30 microseconds and

reach steady state well beyond 40 microseconds. The considerable

curvature for Case 1 near the time origin suggests that care be exercised

in the use of the initial slope of overpotential transients for the estimation

of capacitance. These differences are readily seen in Figure .4-1.
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Current and Potential Distribution

in Cylindrical Geometries: Engineering Applications

to Fuel Cell Design (O

Leonard Nanis c_

 2170

In the design of fuel cells in which the electrolyte is "held" in a

matrix or membrane, screens are generally used for electron collection.

Such effort has been expended (2) in the periormance of complex

mathematical analyses which, -in turn, usually require extensive machine

computation of terms involving infinite series. Such an approach, while

formally correct, is hardly conducive to ease of engineering application.

In order to provide an alternative approach, use has been made of all the

information to be gained from the solution of electrical field problems,

especially the concept of partial resistance. Cylindrical geometry was

chosen since screen contact impressions with a matrix are generally

circular. The mathematical method used is based on transform methods

and, as such, has been demonstrated to be utilitarian since the calculations

have been checked as class and homework problems for the School of

Chemical Engineering, Course 670, Electrochemical Engineering.
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In the mathematical treatment of primary current distribution problems,

it is generally necessary to evaluate the entire potential-space field as a

solution to the Laplace equation

: 0
Eqn. 3.3 - 1

At least three types of useful information for engineering application may be

derived from the solution to Eqn. 3.3-! . First, the gradient of potential

may be used to determine the variation of local current density, preferably in

comparison with the average as JJave. Second, it is possible to assign an

electrical resistance in the electrolyte to single electrodes. This type of

result is useful in several applications such as electrolytic cell design and

study of corrosion enhancement due to inclusions. The virtual resistance of

electrolyte between two electrodes may be found by application of Ohm's

law to the total potential difference between electrodes and the total current

determined from the local current density integrated over the area of a

particular electrode. It is generally true that potential varies rapidly with

distance in the electrolyte in the immediate vicinity of an electrode, so that

single electrode resistances are applicable. This procedure may also be

applied in the case of uniform current density over an electrode surface by

use of the average potential of the electrode in question. Third, despite

the usual mathematical complexity of the potential-space relation, effort

should be directed at obtaining simplified limiting or special cases in order

to evaluate the general extent of the potential field. For engineering

purposes, this type of result is extremely useful since rules may be developed

to permit the application of already obtained results to different electrode

configurations. For example, the p0tential-space field for an isolated

electrode may br examined to estimate the relative distances at which

insulating tank walls do not affect the current distribution on the electrode.
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The three above mentioned approaches have been applied to the

example of a conducting disk located (0 < r < a ; z : 0) at the bounding

plane of a semi-infinite space filled with electrolyte (z > 0). Solution

of Eqn. 1 in cylindrical coordinates

is facilitated by the use of Hankel (or Fourier-Bessel) transformation which

converts Eqn. 2 in the transformed domain to

dz 2
- O Eqn. 3.3 - 3

Eqn. 3 has a general solution

_pz
_ - Aj(p) e ÷ Az(pbe pz Eqn. 3.3 - 4

where A 1 (p) and A 2 (p) are functional coefficients determined by the

boundary conditions associated with Eqn. 2 . The boundary conditions are

met after a simple inversion of Eqn. 4 back to the r , z domain as which

for A 2(p) = 0 becomes

+C_,z):jr pJo(p.)A,(p)_ dp
0

Eqn. 3.3 - 5

where #o is the Bessel function of first kind, zero order.
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Case 1. Disk at Constant Potential

The boundary conditions for the disk at constant potential with the

rest of the plane z = 0 as an insulator are

+-- Vo _ O< _'_ O_ j Z = O Eqn. 3.3 - 6

_"_" -Oj'4' O- < k'< oo , 7_-0 Eqn. 3.3 - 7
2Z

A counter electrode remote from the disk is characterized as

_ = O ) Z --_ c_ Eqn. 3.3 - 8

The condition in Eqn. 8 permits the dropping of the positive exponential term

in Eqn. 4

The use of particular Weber-Schafheitlin discontinuous integrals

fitted to Eqn. leads to the result

_O

V (r,_) = z Vo o (p,-) si_ _p e @
p Eqn. 3.3 - 9

• which has an equivalent as

f

The local current density is determined using Eqn. 9 in the relation

d = _K 9V
;--_ ; Z=O , 04_-<o- Eqn. 3.3 - 11

(where = conductivity giving the result

J(r) = 2_Vo t Eqn. 3.3 - 12
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Eqn. 12 may be integrated to obtain Jave , finally yielding

J(r)
I I

Eqn. 3.3 - 13

This result shown in Eqn. 13 resembles in form that for a strip of width 2a

imbedded in an insulating wall obtained by Wagner (1) using conformal mapping

methods.

Eqn. 10 may be evaluated to indicate that the potential in the

electrolyte has diminished to Vo/10 in a distance where r/a _ 6 and z/a _ 6.

By considering the average current density over the area of the disk,

a total current of 4 k V a is associated with an interelectrode potentialo

difference of V , so that, from Ohm's law, the resistance associated with
o

the disk is

R -
4_0- Eqn. 3.3- 14

Case 2. Constant Current Density on the Disk

A constant current density is specified by a condition of constant

derivative of potential normal to the electrode as

_ j
-- - _ O< F< Q ,Z=O Eqn. 3.3- 15

Dz K

Together with the conditions specified by Eqn. 7 and 8, a result is obtained

as

o < a p Eqn. 3.3- 16
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In order to evaluate the current density along the disk, Eqn. 16 may be

simplified for z = 0 to

I I o z
V(r)-- zF, I, ;o<r<a,z--o Eqn. 3.3-17

and

[--- z_, __-_ 2 _ _ Ot<r<cO ,Z=O Eqn. 3.3 - 18
2K r

where 2F1 represents the hypergeometric function. In addition, a special

solution to Eqn. 16 is available for r = 0 (center of disc) in order to evaluate

the potential variation in the z direction. The result is

I

Eqn. 3.3 1 9

From Eqn. 19, it may be seen that the potential at the center (r = 0, z = 0)

is Ja/k and diminishes to 10% of this value in a distance where z/a _ 5.

Evaluation of Eqn. may be accomplished in terms of complete elliptic

integrals of the first and second kind and lead to a sidewise variation of

potential in the z = 0 plane for r > a which diminishes slowly, reaching

10% of the center value in a distance r/a _ 4.7.

The potential along the disk is obtained from Eqn.

form as

(r)zV(r) = Job _ E ._
K _r

17 in an equivalent

Eqn. 3.3 - 20

where E is the complete elliptic integral of the second kind. The average

potential along the disk (0 <r < a) may be obtained by series expansion of

the elliptic integral and termwise integration or by other methods. The result is

V = _jo,_ -._vc _ O<l-<O- , __=O
5TtK Eqn. 3.3- 21
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The resistance assocaited with the disk under constant current conditions may

be determined from Eqn. 21 and Ohm's law as

R = Eqn. 3.3 - 22
Z/4c 

When compared with the resistance result obtained for Case 1 with the disk

at constant potential (Eqn. 14), it may be seen that constant current density

condition leads to an associated re-sistance (Eqn. 22) which is 8% greater.

Applications

The internal resistance in solid electrolyte fuel cells of the type

considered by Eisenberg may be rapidly estimated in a particularly simple

form by assuming individual screen contacts over a circular area to be in

a parallel circuit to describe the overall resistance. Limits of application

are determined from the spatial variation of potential and Eqn. 14 and

Eqn. 22 provide bounds for the occurrence of overpotential and its effect on

current distribution.
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Consider a matrix with area A, thickness t, contacted on both sides by screens

with mesh spacing h and wire diameter d . The number of contact points will

be A/h 2 and each point will have a partial resistance, r i , of

1 8
< r. < Eqn 3 3 - 23

]. • •

2
4 K d/2 3 rT K d/2

Since the individual contact points on one side of the matrix sheet (conductivity K)

are in parallel, the total resistance of the assemblage (both sides) is obtained

from

R

2r. h 2
1

TOTAL A
Eqn. 3.3 - 24

A useful comparison is made with the resistance of the matrix sheet incorporated

between continuous plates, i.e., the theoretical resistance (which does not,

of course, permit full gas access to the electrode-electrolyte interface). This

theoretical resistance is simply

1 t

RTheoretical = -_ _ Eqn. 3.3 - 25

Thus combining Eqn. 25 and 24 gives

Ractual 2 r. h 2= 1 K Eqn. 3.3 - 26

_heo t

For an assumed constant potential contact,

Ractual = h h

Rtheo t d

Eqn. 3.3 - 27

From the field extent considered above Eqn. 10, Eqn. 27 may be used provided

h t t
6 and 5, 6 or thus

d d h
> 1.
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For the case of uniform current distribution over the contact are_,

Ractual = 1.08 h h

Rtheo t d

Eqn. 3.3 - 28

Similar space limits as for Eqn. 27 are appropriate. It seems reasonable, based

on throwing power considerations, that Eqn. 28 is more realistic than Eqn. 27.

The utility of these results (Eqn. 27, 28) is best seen by comparing resistance

ratios reported by Eisenberg (2)" based on extensive termwise machine computation

of a very complex result. For d/h = 0.1 , h/t=l , the analytic solution has

been evaluated to give a resistance ratio of 10.97 whereas from Eqn. 27 and 28

R
act

I0 < < i0.8

Rtheo

In another example, for d/h = 0.5 , h/t = 1 , present results indicate

Ract
< < 2.16

Rtheo

whereas the 100 term summation '2'f_ yields a resistance ratio of 2. 033.

(2)
reported by Eisenberg is based on constant potential considerations so that

actually the present approach differs by only a few percent even when the

h/d > 6 requirement is lowered to h/d = 2

The work

1. C. Wagner, J.

2. M. Eisenberg,

Engineering",
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_ Foaminq ElectrolT,e Fuel Cell Q2

Senior Investigator_)Dr. L. N anis
_J

Research Specialist: Mr. A. Saunders_ •
N 67 2 i71

On considering the fundamental behavior of the fuel cell porous electrode as

based on research and development in the past several years, it is clear

that fuel gas diffusion plus the resistance of the thin electrolyte fihn must

represent limiting facto_-s on performance. In an attempt to depart from

the concept of the conventional porous electrode, a system was visualized

in which solution of fuel gas into the electrolyte can be accomplished from

a foam structure. Such a foam, supported by the reactant gases, will ideally

consist of masses of small bubbles with a wall thickness approaching 10 -6

cm and will allow rapid diffusion of the trapped gas into the surrounding

electrolyte film. The electrolyte in tile foam will drain back to the main

body of electrolyte via the electrode, thus providing a continuous supply

of gas-saturated electrolyte to the working electrode surface.

By itself, concentrated KOH will not produce a foam when bubble

stirred, so a suitable foaming additive must be found. This preliminary

study has been made to evaluate the following four foaming agents which

were readily available

(a) Sodium Oleate,

(b) GAFAC LO 529 (trade designation, General Analine and Film Co.)

(c) GAFAC PE 510 "

(d) GAFAC RE 610 "

The requirements are that the foamanl must operate in an alkaline

electrolyte without degradation or chemical reaction. The cell, shown

schematically in Figtu'e 3.2-1, did not adequately prevent the electrolyte

from passing through the frit under the impetus of the bubbling gas. Thus

a .degree of electrode depolarization was present at all times. Current
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measurements represent the steady state following a decay from higher values

produced by load changes. The electrodes were 1 cmx 0.5 cmx 0.025 cm Pt.

sheet which were cleaned with 1 : 1 Aqua Regia, well washed in distilled

water and then 6N KOH before being admitted to the cell• The cell

electrolyte was 6N KOH.

Of the four foaming agents tested, (a) and (b) were found to be

unsuitable owing to a rapid drop in open circuit voltage. (c) initially

appeared suitable, but, here again, after being used for several hours,

open circuit voltages were found to be dropping. (This may not be due

• to the foamant but to other impurities and needs to be examined again.)

Of the four tested, (d) was undoubtedly the best as is shown in Figure 3.2-2.

In Figm-c 3 2-2 ....... ' -_ ......• Ln¢ uu_: current and potential are _uuw_ for ON ._n"_"

with smooth platinum electrodes. Where the platinum electrodes were fully

immersed below the solution level, a gentle stirring was provided by

hydrogen and oxygen flow in the respective compartments. The gas flow rate

was 2-3 cc per minute and the cell resistance, measured with an a.c. bridge,

was minimal, i.e., 8 ohm. Some improvement of the current-voltage curve

was obtained by flowing gas in each compartment at a rapid rate (100 cc per

rain.) so as to completely disturb the liquid surface. The enhanced mass

transport resulted in greater cell potentials for a given current in comparison

with full immersion and gentle stirring. The cell resistance was 25 ohm with

the electrodes in the violently agitated electrolyte "surface" region. A

limiting current density was detected.

The uppermost line in Figure 3 .2-2 represents 6N KOH with the

addition of G._FAC RE 610 foamant at a concentration of 1 gm per liter. The

platinum electrodes were lifted clear of the electrolyte surface so that 5 mm

of separation between the electrolyte and the bottom edge of the vertical

sheet electrode existed. The cell resistance increased to 380 ohm.
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Despite the increase in cell resistance because of the lengthened electrolyte path in

the foam the output of the cell was markedly improved. It should be noted

that the flow rate for fuel gas was small (2-3 cc/min). Proper comparison

of this result is best made with the most nearly vertical curve in Figure 3.2-2

(immersed electrodes). Although foam raises the cell resistance between

electrodes from 8 ohm (electrodes immersed) to 380 ohm (electrodes in

foam region), the current-voltage response is greatly improved. It is con-

cluded that foam electrolyte is a workable alternative to the porous electrode.

Further work will entail patent application, engineering of designs to opti-

mize power output, and study of further foaming agents both as to nature

and optimal concent_'ation. It seems reasonable that a very stable foam

is not quite as desirable as one which soaks up hydrogen (and oxygen)

in the large area - small diffusion path liquid boundary of the bubble network

and then breaks structure, causing the fuel rich electrolyte to run down alon_

the electrode surface.
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